记者7日从中国科学院大连化学物理研究所了解到,该所吴凯丰研究员团队在量子点光化学研究中取得重要进展,率先实现了低毒性量子点敏化的近红外至可见光的高效上转换,并将该体系与有机光催化融合,实现了高效快速的太阳光合成。相关研究成果2月7日发表在《自然·光子学》上。
利用低毒性量子点开展近红外光子上转换和有机催化合成。
基于太阳光开展能源转化和工业生产,是解决全球能源危机、助力我国实现“双碳”目标的重要路径之一。太阳光中蕴含着大量的红外光子,这些光子不为人眼所见,且能量较低,通常难以有效转化和利用。胶体量子点是一类溶液法生产的理想捕光材料,它们的吸光范围很容易被拓展至红外波段。同时,吸光后的激发态量子点能够参与丰富的光化学转化过程,生产太阳燃料或者精细化学品。
红外光到可见光的上转换,在能源、医学、国防等诸多领域具有重要意义。比如对太阳能电池而言,上转换能使器件可以有效利用阳光中大量的低能量红外光子,颠覆性地提升太阳能转换效率。在前期研究中,研究团队深入系统地研究了量子点敏化有机分子三线态的动力学机制,探索了这些新机制在光子上转换、有机光合成等领域的初步应用。此次研究中,团队聚焦于铜铟硒基近红外量子点,该类量子点相对绿色环保,可用于替代剧毒性的铅基近红外量子点。
团队制备了硫化锌包覆的锌掺杂铜铟硒核壳量子点,有效解决了该类量子点缺陷多和稳定性差的难题。研究人员在量子点表面修饰羧基化的并四苯分子作为三线态受体,并采用红荧烯分子作为湮灭剂,构建了溶液相上转换体系。该体系成功实现了近红外至黄光的上转换,量子效率高达16.7%。
在此基础上,该团队将该上转换体系与有机光催化融合,将上转换产生的红荧烯单线态直接用于“原位”有机氧化、还原、光聚合等反应,巧妙避免了上转换光子传播至溶液表面所经历的量子点重吸收损失。得益于近红外光子的有效利用和量子点的宽谱吸收特性,该上转换—有机催化融合体系可在太阳光下高效快速运行。实验表明,在室内窗台上,几秒内即可实现丙烯酸酯的光诱导聚合。
(原标题《我科学家通过红外光上转换 实现高效太阳光合成》)