·“美国食品药品监督管理局(FDA)生物评估和研究中心已制定了一个“四点计划”加快基因疗法的批准,包含促进生产效率、确认加速批准法规途径、联合其他监管机构、启动第二代“曲速行动”等,并建议简化病毒载体审查程序。
当地时间7月31日,据行业媒体Fierce Biotech报道,美国食品药品监督管理局(FDA)生物评估和研究中心(FDA’s Center for Biologics Evaluation and Research,CBER)主任彼得·马克斯(Peter Marks)表示,基因疗法潜力巨大,进展缓慢可能是因为监管过程的阻碍。“如果我们无法提高审批(基因疗法)产品的速度,这一疗法将难以为患者带来好处。”
根据FDA官网的数据,迄今为止,生物评估和研究中心(CBER)共批准了32个细胞和基因疗法产品,其中基因疗法产品仅有14个。
2023年4月,马克斯曾表示, CBER已制定了一个“四点计划”加速批准基因疗法,包含促进生产效率、确认加速批准法规途径、联合其他监管机构、启动第二代“曲速行动”(Operation Warp Speed,目的是推动罕见病药物研发的进展,)等,并建议简化病毒载体审查程序。“如果 FDA 在未来几年内每年只批准两到三个(基因治疗)药物,那就是FDA的失败。” (详见澎湃科技报道《美国参众两院人士呼吁FDA成立特别工作组,推动罕见病药物研发》)
马克斯称,为了缓解积压的工作,FDA对组织和先进疗法办公室(OTAT)进行了改组,重新命名为治疗产品办公室(OTP),并将OTP提升为超级办公室,聘请了更多的审查员。“随着工作人员的增加, FDA将增加和改善与药品赞助商的沟通,以加速基因治疗的发展。”
据《华盛顿邮报》(Washington Post)报道,此前OTAT的人员配备水平一直无法跟上不断增长的案件量,以及行业会议数量。FDA前OTAT主任威尔逊·布莱恩(Wilson Bryan)在2022年11月举办的美国基因与细胞治疗学会(ASGCT)联络会议上表示,新提案的涌入使OTAT不堪重负。2014年,OTAT监管的产品中申请临床试验的不到200个,这一数字在 2020 年跃升至666个,2021年为556个。
《华盛顿邮报》称,基因疗法共有两种技术手段,其中基因增补技术指的是通过特定载体,向患者体内引入健康遗传基因,或抑制致病基因的治疗手段,基因编辑技术则是通过在体内或体外编辑特定载体、修饰患者自体基因的治疗手段。其中,基因增补技术只能使患者的症状减缓,无法完全治愈疾病,因为这种疗法不能改变人体自体细胞的基因组序列,随着患者体内注射载体的降解,病变基因将重新导致病症出现。基因编辑技术则被认为能够彻底治愈疾病。
据FDA官网,截至目前,已经获批上市的14种基因疗法产品均采用通过病毒、细菌等载体递送功能基因的基因增补技术,备受瞩目的基因编辑技术尚未有产品获批上市,但对此领域的尝试不在少数。
2012年6月美国科学家詹妮弗·杜德纳(Jennifer Doudna)和法国科学家埃玛纽埃尔·卡彭蒂耶(Emmanuelle Charpentier)发明CRISPR-Cas9(由sgRNA指导Cas蛋白对靶基因定性修饰)基因编辑技术,能够精确修饰特定目标基因,从而破坏有害基因或修复变异基因,这使得通过基因疗法完全治愈遗传病成为可能。自这种被称为“基因魔剪”的技术发明以来,基因编辑迅速成为药物开发的重要创新领域。据英国咨询公司GlobalData统计,目前有460多家公司从事CRISPR基因编辑技术的开发和应用,其中包括技术供应商、老牌制药公司和新兴初创企业。
2023年6月,埃玛纽埃尔·卡彭蒂耶创立的瑞士生物技术公司CRISPR Therapeutics与美国制药企业福泰制药(Vertex Pharmaceuticals)宣布,FDA已接受其联合开发的体外CRISPR基因编辑药物exagamglogene autotemcel(exa-cel)的生物制剂许可申请(BLA),用于治疗严重镰状细胞病(SCD)和输血依赖性β地中海贫血(TDT)。其中,SCD 适应证被授予优先审查,预计将在2023年12月8日之前做出裁定。TDT适应证被授予标准审查,预计将在2024年3月30日之前做出裁定。
同月,詹妮弗·杜德纳创立的美国生物技术公司Intellia Therapeutics,在2023 年欧洲过敏和临床免疫学学会(EAACI)混合大会上公布了其应用于遗传性血管水肿(HAE)的体内CRISPR基因编辑研究药物——NTLA-2002临床1期实验数据。结果显示,单剂NTLA-2002可使HAE发作率平均降低 95%,中位随访时间为9个月,最长无发作持续时间为11.5个月,并且还在持续增加。该公司表示,该研究药物临床2期实验的筛选和给药正在进行中。
美国华裔基因编辑先驱、美国麻省理工学院——哈佛大学博德研究所(Broad Institute of MIT and Harvard)教授张锋创立的生物技术公司Editas Medicine也是CRISPR基因编辑药物创新领域最重要的参与者之一。该公司主要使用 CRISPR/Cas9和CRISPR/Cas12a系统进行基因组编辑,开发体内和体外基因编辑药物,主要涉及血液学和肿瘤学治疗领域。
2023年6月,该公司在欧洲血液学协会(EHA)混合大会上公布了CRISPR基因编辑研究药物——EDIT-301用于治疗SCD和TDT的临床1期实验数据。数据显示,4名SCD患者中有2名在EDIT-301治疗后5个月达到正常血红蛋白水平,另2名SCD患者尚未完成治疗,但血红蛋白水平的增加遵循前两名SCD患者的血红蛋白增长轨迹。1名TDT患者表现出成功的中性粒细胞和血小板植入现象。
同月,张锋团队首次在真核生物(藻类、真菌、植物和某些软体动物)中发现了一种名为Fanzor的蛋白质,有望在经过系统工程改造优化后应用于新一代基因编辑器中。目前常见的基因编辑载体主要来源为细菌,其作为原核生物,相较于真核生物,与人类在生物学上的共同点和相似性较少,更易产生不必要的免疫不良反应。(详见澎湃科技报道《追问|张锋团队首次在真核生物中发现新型“基因魔剪”,新时代开启?》)
此外,2016年,美国麻省理工学院——哈佛大学博德研究所(Broad Institute of MIT and Harvard)教授刘如谦(David Liu)在CRISPR技术上进行改良,研发出碱基编辑技术。他与张锋合作创办了美国生物技术公司Beam Therapeutics。2022 年 11 月,该公司招募了第一名SCD患者,进行碱基编辑研究药物Beam -101的临床1期实验,并计划于 2024 年报告多名患者的数据。2022年12月,该公司的另一款碱基编辑研究药物BEAM-201获得FDA临床实验许可,用于治疗复发/难治性T细胞急性淋巴细胞白血病(T-ALL)和 T淋巴母细胞淋巴瘤(T-LBL),并预计将在2023年中期对第一位患者进行给药。